

Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии (ФГБНУ «ВНИРО»)

Сбережение и восстановление водных биоресурсов – стратегия рыбохозяйственной науки в России:

масштабные проекты ФГБНУ «ВНИРО» по восстановлению экосистем крупных сибирских рек на примере бассейна реки Пясина

В.А. Бизиков

Научный руководитель Норильской экспедиции ФГБНУ «ВНИРО», Заместитель директора по научной работе

Авария на Норильской ТЭЦ-3 29 мая 2020 г.

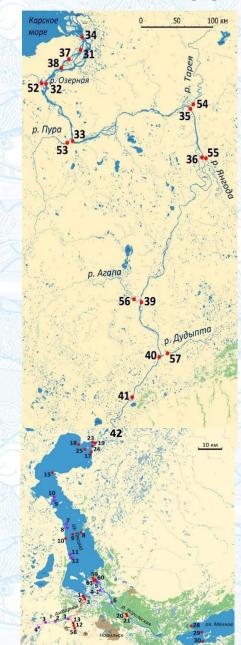
Чрезвычайная ситуация федерального уровня

В окружающую среду попало 21 тыс. тонн дизельного топлива, в том числе в водные объекты:

- р. Амбарная (17 км),
- р. Долдыкан (8 км), ручей Надеждинский (4,5 км)

• Какой ущерб был нанесен водным биоресурсам и экосистемам?

Норильская экспедиция ВНИРО


Первый этап (10-22 июня 2020 г.) мониторинг водных биоресурсов и среды в водных объектах в зоне аварии

Второй этап (12-25 июля 2020 г.) экспедиционные исследования Норило-Пясинской озерно-речной системы вплоть до Карского моря

Третий этап (22-26 августа 2020 г.) исследования озера Пясино и верховий рек Амбарная и Норильская

Технические средства:

катер «Ярославец», суда на воздушной подушке, маломерные катера типа «КС», моторные лодки. Для быстрой доставки проб в лаборатории привлекались вертолеты

в том числе 2 доктора наук и 11 кандидатов наук,

Норильская экспедиция ВНИРО

Обследованы: ручей Надеждинский, озера Пясино и Мелкое, реки Далдыкан, Амбарная, Норильская, Пясина, Дудыпта, Агапа, Ангода, Тарея, Пура, Озерная.

Общая протяженность маршрута экспедиции составила свыше 900 км.

На 42 комплексных станциях выполнены: контрольный лов рыбы;

контрольный лов рыбы; сбор проб фито- и зоопланктона, зообентоса, проб воды, донных осадков и рыбы на содержание нефтепродуктов и тяжелых металлов

Загрязнение водных объектов Норило-Пясинской системы

Нефтепродукты

В реках Далдыкан и Амбарная зафиксировано тотальное загрязнение нефтепродуктами (НП) воды, донных осадков и рыбы. ПДК тяжелых металлов превышено в десятки и сотни раз. В донных осадках превышено содержание меди (до 114), никеля (до 114), свинца (до 6.6), кадмия (до 9)

В озере Пясино

зафиксировано повышенное содержание НП в воде, донных осадках и рыбе на ряде станций. Превышено ПДК меди в воде (1,7-9,1 ПДК), железа (1,4-13 ПДК), марганца (до 3 ПДК). В донных осадках превышено содержание меди (2,2-4,1), цинка (до 2,2), свинца (1,8-3,8), никеля (1,5-3,8), марганца (1,6-1,7).

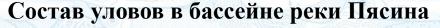
В реке Пясина

превышение содержания НП в донных осадках, а также в рыбе обнаружено на ряде станций по всему руслу реки, в том числе – в ее устье. Превышение ПДК в воде р. Пясина отмечено только для меди и железа.

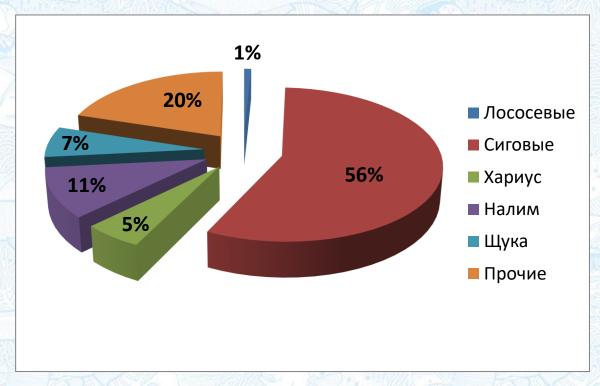
В фоновых водоемах (река Норильская, озеро Мелкое) отсутствовало загрязнение НП воды и донных осадков, но на отдельных станциях встречалась загрязненная рыба.

Определение размера вреда водным биоресурсам водоемов, пострадавших от аварии на Норильской ТЭЦ-3

Расчет ущерба, нанесенного рыбным запасам вследствие аварии на Норильской ТЭЦ-3 компании, выполнен на основании главы II «Методики исчисления размера вреда, причиненного водным биоресурсам», утвержденной Приказом Росрыболовства № 1166 от 25.11.2011 и зарегистрированной в Минюсте РФ № 23404 от 05.03.2012.


Составляющими компонентами выявленного ущерба стали:

- ущерб от потери прироста водных биоресурсов в результате гибели кормовых организмов (фитопланктона, зоопланктона и зообентоса);
- ущерб от ухудшения условий обитания и потерь от утраченного потомства (на основании показателей рыбопродуктивности);
- ущерба от потери водных биоресурсов для хозяйственного использования вследствие их загрязнения нефтепродуктами.


Суммарный размер вреда водным биоресурсам Норило — Пясинской системы, нанесенного в результате аварии на Норильской ТЭЦ-3, рассчитанный в соответствии с Методикой № 1166, в натуральном выражении составил 8 888, 4 тонн

Рыбохозяйственное значение бассейна реки Пясина

Вылов рыбы в реках и озерах бассейна реки Пясина (тонны)

Статистика вылова в бассейне р. Пясина ведется с 1930-х гг. XX века. Наибольшие уловы были получены в 1940-е годы (до 1100 тонн; в среднем 800 т/год). Основу вылова составляли ценные породы рыб: сиговые, лососевые, налим, щука. После развала СССР вылов упал до 50-90 т/год, однако, начиная 2008 г. он стал устойчиво расти. Низкий вылов в 1990-е годы был обусловлен экономическими причинами: промысел на отдаленных участках реки стал нерентабельным и был свёрнут.

Компенсация вреда и восстановление водных биоресурсов водоемов, пострадавших от аварии на Норильской ТЭЦ-3

Мировое соглашение заключено с целью возмещения вреда (8 888,4 тонн), причиненного водным биоресурсам в результате аварии на Норильской ТЭЦ-3, между АО НТЭК, Енисейским территориальным управлением Федерального агентства по рыболовству и ФГБНУ «ВНИРО». Утверждено определением Арбитражного суда Красноярского края 29 июля 2022 года по делу № А33-19288/2021.

Мировое соглашение — это программа полного и поэтапного восстановления экосистем и рыбохозяйственной продуктивности водоемов, пострадавших от Норильской аварии.

Порядок и этапы реализации Мирового соглашения (2023 – 2051 гг.):

<u>1-й этап (2023 — 2032 гг.):</u> ФГБНУ «ВНИРО» ежегодно проводит рыбохозяйственные исследования Норило-Пясинской системы, разрабатывает Рыбоводно-Биологическое Обоснование (РБО) на строительство рыбоводного завода (заводов), определяет приемные емкости для осуществления компенсационных выпусков. АО НТЭК ежегодно осуществляет компенсационные выпуски 3 млн шт. молоди сибирского осетра навеской не менее 1 г в р. Енисей, строит рыбоводный завод (заводы), формирует ремонтно-маточные стада по рекомендациям ВНИРО;

<u>2-й этап (2033 — 2050 гг.):</u> АО НТЭК вводит в эксплуатацию рыбоводные завод (заводы) и обеспечивает ежегодные выпуски в бассейн р. Пясина молоди рыб (навеской не менее 1 г): сибирского осетра — 6 944 445 шт.; нельмы — 400 тыс. шт.; сига, чира и муксуна — по 7 млн шт. каждого вида, по рекомендациям ВНИРО.

<u>3-й этап (2051 г.):</u> ВНИРО выполняет заключительные исследования бассейна р. Пясина для оценки эффективности восстановительных мероприятий.

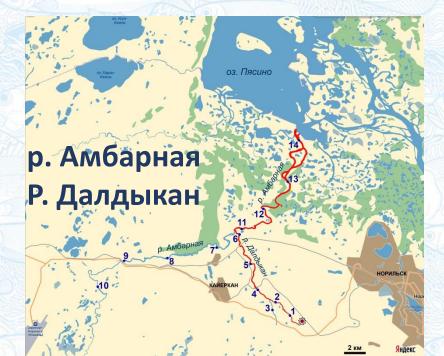
Норильская экспедиция ФГБНУ «ВНИРО» - научное обеспечение восстановления водных биоресурсов пострадавших водоемов

Цели: мониторинг состояния водных экосистем и водных биоресурсов Норило-Пясинской озёрно-речной системы и разработка научно обоснованных рекомендаций по осуществлению мероприятий в целях возмещения вреда, причинённого водным биоресурсам в результате аварии.

Задачи:

1-й этап (2023-2032 гг.): Оценка численности, запаса, возрастного состава и биологии промысловых видов рыб и их кормовой базы (фито- и зоопланктона, зообентоса); оценка уровня загрязнения водных биоресурсов и среды их обитания; определение мест нереста, районов и сроков отлова производителей, научные рекомендации по повышению эффективности компенсационных мероприятий;

2-й этап (2033-2050 гг.): Мониторинг восстановления популяций промысловых рыб в условиях осуществления выпусков; оценка эффективности выпусков; мониторинг межгодовых изменений состояния загрязнения водных биоресурсов и среды их обитания нефтепродуктами и тяжелыми металлами;


3-й этап (2052 г.): итоговая оценка состояния водных экосистем и биоресурсов; оценка эффективности компенсационных мероприятий по возмещению вреда.

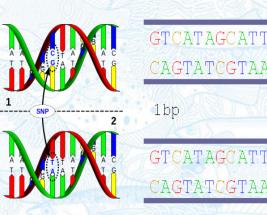
Норильская экспедиция ВНИРО – районы и виды исследований

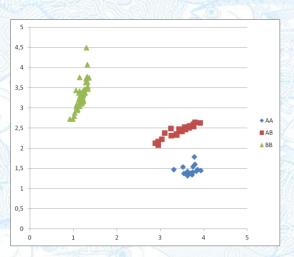
Виды исследовательских работ:

- Учетные сетные съемки;
- Учетные съемки мальковым неводом;
- Гидробиологические съемки фито-, зоопланктона и зообентоса;
- Популяционно-генетические исследования;
- Гидролого-гидрохимические исследования;
- Токсикологические исследования.

Генетический мониторинг восстановления популяций рыб бассейна р. Пясина Этап 1. Популяционно-генетические исследования

Анализ генетический дифференциации популяций ценных видов рыб (сибирский осетр, нельма, сиговые) бассейнов рек Пясина, Енисей и Обь для оценки возможности пополнения РМС из генетически наиболее близкой популяции (в случае невозможности их создания путем отлова производителей в р. Пясина).


Генетический мониторинг восстановления популяций рыб бассейна р. Пясина


Этап 2. Генетический мониторинг создаваемых РемонтноМаточных Стад (РМС)

- Контроль генетической аутентичности производителей в создаваемых РМС, предназначенных для восстановления популяций р. Пясина.
- Создание (для сиговых) и апробация эффективности (для осетровых) панелей генетических SNP- и микросателлитных маркеров для оценки популяционной принадлежности производителей и прослеживаемости выпускаемой молоди.

Генетический мониторинг восстановления популяций рыб бассейна р. Пясина

Этап 3. Генетический мониторинг эффективности искусственного воспроизводства

Сбор генетических образцов, получение генетических профилей производителей на заводах, регистрация схем скрещивания в нерестовой кампании

Учетные съемки молоди в реках и озерах Норило-Пясинской системы

Генотипирование молоди, отловленной в природе, и определение ее происхождения

Значение Норильской экспедиции ФГБНУ «ВНИРО» для сохранения и восстановления водных биоресурсов российской Арктики

Норильская экспедиция ВНИРО — научный полигон отработки новых методов и технологий исследований водных экосистем рек и озер арктической зоны Российской Федерации;

Реализация Мирового Соглашения станет примером направленного научно обоснованного восстановления рыбохозяйственной продуктивности и промышленного рыболовства крупной озерно-речной системы в Арктической зоне;

В результате Норильской экспедиции Норило-Пясинская озерно-речная система превратится в одну из наиболее исследованных пресноводных экосистем российской Арктики;

В ходе Норильской экспедиции будут разработаны новые перспективные методы исследований и теоретические модели, которые в дальнейшем будут широко применяться при восстановлении крупных озерно-речных систем Арктической зоны, пострадавших от антропогенного воздействия.

